P2433

[4758]-605

[Total No. of Pages: 4

T.E. (Information Technology)

DESIGNAND ANALYSIS OF ALGORITHMS

(2012 Pattern) (Semester - II) (end - Sem.) (314449)

Time: 2½ Hours]

[Max. Marks:70

Instructions to the candidates:

- 1) Answers Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or Q.10.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data if necessary.
- **Q1)** a) Solve following recurrence relation:

[5]

[5]

$$T(n) = T(n/2) + 1$$

$$T(1) = 1$$

b) Analyze merge sort and find time complexity of merge sort.

OR

- **Q2)** a) Write an algorithm to find factorial using recursion. Find the time complexity. [5]
 - b) Consider following instance for simple knapsack problem. find the solution using greedy method. [5]

N=8

$$P = \{11, 21, 31, 33, 43, 53, 55, 65\}$$

$$W = \{1, 11, 21, 23, 33, 43, 45, 55\}$$

$$M = 110$$

	b)		te Floyd's algorithm for all pairs shortest path and find time plexity. [5]							
		OR								
Q4)	a)	Solve the following job sequencing problem using greedy algori								
		N(N	N(Number of jobs) = 4							
			Tits associated with jobs $(P_1, P_2, P_3, P_4) = (100, 10, 15, 27)$. Deadline ciated with jobs $(d_1, d_2, d_3, d_4) = (2, 1, 2, 1)$.							
	b)	Wha metl	nt is Principle of optimality? Differentiate between greedy and dynamic nod. [5							
Q5)	a)	Writ	te recursive backtracking algorithm for sum of subset problem. [8							
	b)	b) Write an algorithm for 0/1 knapsack problem using backtrac								
			OR							
Q6)	a)	Wha	nt is backtracking? Write general iterative algorithm for backtracking							
	b)	Writ	te short note on: [8							
		i)	State space tree							
		ii)	Live node							
		iii)	Expanding node (E-node)							
		iv)	Bounding function							

Q3) a) Write Kruskal's algorithm to find minimum spanning tree.

[5]

Q7) a) Explain the term:

[10]

- i) Least cost branch and bound.
- ii) Compare backtracking and branch and bound method.
- b) Consider 0/1 Knapsack instance n=4 with capacity 10 kg. such that [8]

Item	Profit (in Rs.)	Weight (in kg)
1	40	4
2	42	7
3	20	5
4	12	3

Find maximum profit using first in first out branch and bound (FIFOBB) method. Use fixed size formation for state space tree.

OR

Q8) What is travelling salesman problem? Find the solution of following travelling salesman problem using branch and bound method. [18]

	8	20	30	10	11
	15	8	16	4	2
Cost Matrix =	3	5	8	2	4
·	19	6	18	8	3
	16	4	7	16	8

Explain how parallel computations are possible using complete binary b)

Prove that Clique problem is NP complete.

[8] tree.

[8]

OR

Q10)a) Specify one example of NP-hard problem. Also mention that why it is NP hard. [8]

b) Explain in detail models for parallel computing. [8]

EEE

Q9) a)